

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION

Model Answer Subject Code:

22441

Important Instructions to examiners:

Subject Name: Heat Power Engineering

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE	
	(a) Differentiate between open and close system		
	Ans.	Open system :This is a system in which both mass and energy crosses the system boundary OR transfer of mass and energy between system and surrounding e.g. steam turbine Closed system: In this system, there no transfer taking place between system surrounding, only the energy crosses bound e.g. Heating of water in closed vessel Closed system: In this system, there no transfer taking place between system surrounding, only the energy crosses bound e.g. Heating of water in closed vessel Closed system: In this system, there no transfer taking place between system surrounding, only the energy crosses bound e.g. Heating of water in closed vessel Closed system: In this system, there no transfer taking place between system surrounding, only the energy crosses bound e.g. Heating of water in closed vessel	and
	(b)	Write equation for polytropic process	
	Ans.	i)change in internal energy(du): du= m Cv (T ₂ -T ₁) ii)work done dw:	01Mark 01Mark
	(c)	$dw= P_1V_2-P_2V_2 / n-1$ State four properties of liquid fuel (each1/2 mark)	
	Ans. 1. High calorific value 2. Moderate ignition temperature 3. Low moisture content 4. Low NOx combustible matter		

22441 Page **1** of **11**

	1		1			
		5. Moderate velocity of combustion				
		6. Products of combustion not harmful				
		7. Low cost				
		8. Easy to transport				
		9. Combustion should be controllable				
		10. No spontaneous combustion				
		11. Low storage cost				
		12. Should burn in air with efficiency.				
	(d)	Define				
	Ans.	i)Dryness fraction: Dryness fraction is defined ratio of the mass of the dry steam				
		present in the total mass of steam.	01Mark			
		Or				
		Dryness fraction is ratio of the mass of actual dry steam to the mass of wet steam.				
		Therefore, $x = ms/ms + mw$				
		Where ms and mw are the masses of steam and water in the mixture of (ms + mw).				
		ii) Degree of superheat: It i difference between the temperature of Superheated				
		Steam and the saturation temperature correspondingly to given pressure is said to				
		be Degree of Superheat.				
	(e)	State two advantages of multistage compression				
	Ans.	1.Saving in work is obtained				
		2. There is little chance of lubrication trouble as the maximum temperature is	02			
		reduced.	(1 mark			
		3.it improves the volumetric efficiency.	each)			
		4.the leakage loss is reduced considerably.				
		5. it provide more uniform torque and thus smaller size flywheel is required.				
		6.lighrter cylinders.				
	(f)	Define renewable energy. Give two examples.				
	Ans.	Renewable energy:				
		Energy generated by using wind, tides, solar, geothermal heat, and biomass	01Mark			
		including farm and animal waste as well as human excreta is known as non-				
		conventional energy. All these sources are renewable or in exhaustible and do not				
		cause environmental pollution. More over they do not require heavy expenditure.				
		The example of Renewable energy sources				
		1. Wind power 2. Biomass 3. Solar applications of energy				
		4. Hydraulic power 5. Fuel cells 6. Bio fuels	01Mark			
	(g)	State two limitations of solar energy				
	Ans.	1. Uses a Lot of Space 2. High initial capital costs				
		3. Problem of efficiency (low) 4. Weather dependent	02			
		5.Solar energy storage is expensive	Marks			
		a.esiai energy eterage is experience				
2		Attempt any THREE				
	(a)	Classify steam turbine on the basis of				
	(=,	•				
	Ans.	i) Principle of action:				
		a) Impulse turbine b) Reaction turbine c) Impulse reaction turbine	01Mark			
		ii) Direction of steam flow:				
		a) axial flow turbine b) Radial flow turbine c) Tangential flow turbine	01Mark			
		, , , , , , , , , , , , , , , , , , , ,				
	1					

Page **2** of **11** 22441

		iii)method of governing:	nine b) Nozzle control gover	ning turbine c) By pass	01Mark	
	(b)	governing turbine d) combir iv) Steam pressure: a)High pressure turbine Draw dual cycle on P V	,	Medium pressure turbine	01Mark	
	Ans.	in it.				
		1-2 Isentropic compression 2-3 the combustion of fuel 3-4 the combustion of fuel	at constant volume. at constant pressure luring which work is done by	y the system.	02 Marks For diagran	
	(c)	Classify the steam boiler	on the hasis of		process	
1		i) Content in the tubes: a) Fire tube boiler b) Water tube boiler			01 Mark	
		ii)Circulation of water and stonial a) Natural circulation boile b) Forced circulation boile	er		01 Mark	
		iii)According to boiler use: a) Stationary boiler b) Mobile boiler			01 Mark	
	iv)according to axis of shell a) Horizontal boiler b) Vertical boiler c) Inclined boiler					
	(d)	Compare rotary and red following points:	ciprocating air compress	or on the basis of the		
	Ans.	Points	Rotary air compressor	Reciprocating air compressor		
		i) Suitable at low and high discharge	Discharge pressure of air is low. The pressure	Discharge Pressure of air is high. The pressure	01 Mark	

Page **3** of **11** 22441

			ratio per stage will be in	ratio per stage will be in	
			the order of 3 to 5.	the order of 4 to 7.	
			For low and medium	For medium and high	
			pressures.	pressure atio.	
			For large volumes.	For low and medium gas	
				volume.	04 Massla
		ii) requirement of receiver	No need	required	01 Mark
		iii) balancing problem	Rotary parts of machine,	Due to reciprocating	
			thus it has less		01 Mark
			vibrational problems.	vibrational problem, the	o i iliarik
			The machine parts are	parts of machine are	
			fairly balanced.	poorly balanced.	
		iv) lubricant	Simple lubrication	Complicated lubrication	01Mark
		requirements	system.	system.	
3		Attempt any THREE) oyotom.	cyclerii.	
	(a)		am of Otto cycle and write	e its equation for thermal	
	(4)	efficiency with its signific		, its equation for thornia.	
	Ans.	P V and T S diagram of Ot			
			•		
		1-2: Isentropic con 2-3: constant volu			
		3-4: Isentropic Exp			
			ime heat rejection	3	
				A	Diagram
		Q _{in} W _{out}		Q_{in} W_{out}	02
		↑ ➡ ↑	↑ I	↓ / →	Marks
		p 2	T 2	4	
			Q _{Out} W _{in}		
		W_{in}		■ Q _{Out}	
				•	
		$\mathbf{v}_2 = \mathbf{v}_3$ \mathbf{v}_1	$=$ v_4 $s_1 = s_2$	$s_3 = s_4$	
		V →		S →	
		P-V a	nd T-S Diagram of Otto Cycle	9	
					Equatio
		Thermal efficiency			n
		_			02
		$n = \frac{\text{Work Done}}{}$			Marks
		$\eta_{\text{th}} = \frac{1}{\text{Heat Supplied}}$			
		1			
		$n = 1 - \frac{1}{n}$			
		$\eta_{\text{th}} = 1 - \frac{1}{r^{(\gamma - 1)}}$			
		r (, -)			
		Compression ratio = r			
		John Pression ratio - 1			
<u></u>		<u>l</u>			

22441

(b)	A coal has following composition by mass: 82% H_2 =5%, S=1.5%, O_2 =2.4, N_2 =1% and remaining is ash. Find HCV and LCV of fuel.	
Ans.	Given Data: (consider Carbon mass 82%) Carbon C = $82\% = 0.82$, Hydrogen = $H_2 = 5\% = 0.05$ Oxygen = $O_2 = 2.4\% = 0.024$ Nitrogen = $O_3 = 0.01$ Sulphur = $O_3 = 0.015$	
	Dulong's formula H.C.V. of coal = $33800 \text{ C} + 144500 \text{ (H}_2 - \text{O}_2/8 \text{)} + 9300 \text{ S}$ KJ / Kg = $33800 \times 0.82 + 144500 \text{ (0.05 - 0.024/8)} + 9300 \times 0.015$ = $27716+6791.5+139.5$ = 34647 KJ / Kg	02 Marks
	L.C.V. of coal = H.C.V $9H_2 \times 2442 = KJ/Kg$ = $34647 - (9 \times 0.05) \times 2442$ = $33548.1 KJ/Kg$	02 Marks
(c)	Suggest energy conservation techniques to be used in automobile workshop. Any four points	
Ans.		1 x4 Marks
	11. Replace incandescent exit lights with three to seven watt LED exit lights. These lights last longer (up to 25 years) and reduce maintenance costs.	
(d)	Two kg of gas at 50° C is heated at constant volume until pressure is doubled. Determine i) final temperature ii) change in internal energy	
Ans.	Given data: Mass of gas m=2 kg Temperature of gas T_1 = 50+273= 323 K Initial pressure P_1 Final pressure P_2 = 2 P_1	
	i) final temperature T_2 For constant volume process V1= V2 $P_1/T_1 = P_2/T_2$	02 Marks

Page **5** of **11** 22441

		$P_1/323 = 2 P_1/T_2$ $T_2 = 646 K = 373$ ° C	
		ii) change in internal energy du du = mCv (T ₂ - T ₁) = 2 x 0.718 (646 - 323) = 463.82 KJ	02 Marks
4		Attempt any THREE of the following	
	(a)	Explain the following terms with example	
		 Conduction- It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another without displacement of molecules or due to the vibrations of molecules. Example-Heat transfer in metal rod. Convection: It is the mode of heat transfer from one part of substance to 	1.5 Marks
		another part of same substance or one substance to another with displacement of molecules or due to the fluid flowing. Example: Heat flow from boiler shell to water.	1Mark
		3) Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Example: The heat energy receives from sun to the earth surface.	1.5 Marks
	/b\		
	(b)	Describe with neat sketch of working of bomb calorimeter	
		Oxygen valve Release valve Fuse wire Cotton Sealing water Leads to fuse	Sketch 02 Marks
		The calorimeter is made of austenitic steel which provides considerable resistant to corrosion and enables it to withstand high pressure. In the calorimeter use of a strong cylindrical bomb in which combustion occurs. The bomb has two values at the top. One supplies oxygen to the bomb and other releases the exhaust gases. A crucible in which a weighed quantity of fuel sample is burnt is arranged between the two electrodes as shown in fig. The calorimeter is fitted with water jacket which surrounds the bomb To reduce the losses due to radiation calorimeter is further provided with a jacket of water and air. A stirrer for keeping the temperature of water uniform and a thermometer the	Explana tion 02 Marks

Page **6** of **11** 22441

		temperature up to accuracy of 0.0010 C is fitted through the lid of the calorimeter. The heat	
		released by the fuel on combustion is absorbed by the surrounding water and the	
		calorimeter. From the above data the calorific value of the fuel can be found.	
	c)	Sketch energy flow diagram for steam boiler	
	Ans:		
		Inlet Fuel Outlet Steam	a.
		Inlet Fuel Outlet Steam	Sketch 04
			04 Marks
		Dust:	Walks
		& Unburnt Blowdowr Convection	
		Dust & Unburnt Fue Blowdown Convection & Radiation	
		<u> </u>	
	d)	Fig. Energy flow diagram of Steam Boiler State the factor governing the selection of cogeneration system. write	
	uj	advantages of cogeneration.	
	Ans:	Factor governing the selection of cogeneration system:	
		1) electrical load matching 2) thermal load matching	02
		3) Electrical load matching 4) Thermal load matching	Marks
		5)Thermal to electrical energy ratio 6) Quality of required thermal energy	
		7) Fuel availability 8) Installation and available space	
		9) Operational costs 10) Pollution concern Advantages of Cogeneration:	
		1) Co-generation can meet both power & heat needs.	
		2) Less costly.	02
		3) Very high efficiency.	Marks
		4) Reduction in emission of pollutants due to reduced fuel consumption.	
	(e)	State the various factors affecting volumetric efficiency of air compressor	
	(6)	otate the various factors affecting volumetric efficiency of all compressor	
	Ans:	Factors affecting volumetric efficiency of reciprocating air compressor:	
		1) Clearance Volume	
		Restricted passage and leakage at inlet valves	0.4
		Speed of rotation Piston ring leakages	04 Marks
		5) If fresh air comes in contact with hot wall, it get expanded, which decreases	IVIAI NS
		the charge taken in therefore volumetric efficiency decreases.	
5		Attempt any Two of the following	
	a)	Describe ultimate analysis and proximate analysis of solid fuel	
		Ultimate Analysis: Ultimate analysis is complete breakdown of coal into	
		Chemical constituents. This analysis is important for large scale trials. It serves the	
		basis For calculation of the amount of air required for complete combustion of 1kg	
		of fuel. It gives percentage content on mass basis of carbon, hydrogen, oxygen,	

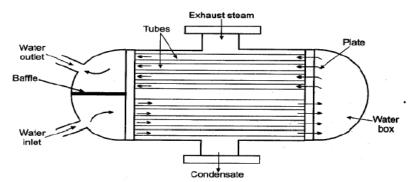
Page **7** of **11** 22441

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sulphur and ash. We are able to calculate the Calorific value of coal.

In ultimate analysis a complete breakdown of coal into its chemical constituents is carried out by chemical process. This analysis is important for large scale trials i.e. boiler trial. This analysis useful for calculation of amount of air required for complete combustion of 1 Kg. of coal. This analysis gives percentage of carbon, hydrogen, oxygen, sulphur and ash on mass basis their sum is taken as equal to 100%. In this analysis moisture is consider as separate item. This analysis is also used to determine calorific value of the coal.


03 Marks

Proximate Analysis: Proximate analysis is complete breakdown of coal into physical constituents without knowledge of analytical chemistry. This analysis made By means of a chemical balance &temperature control Furnace. The component in The analysis is fixed carbon volatile matter, moisture& ash. This is used to calculate The heating value of coal. In this analysis separation of coal into its physical components. This analysis made by means of chemical balance and temperature controlled furnace. In this analysis sample is heated into furnace. The components in analysis are fixed, carbon, volatile matter, moisture and ash. These components are expressed in percentage on mass basis and their sum is taken as 100% sulphur is determined separately. This analysis also used to determine heating value of the

03 **Marks**

b) Describe with neat sketch the construction and working of surface condenser

Ans:

Marks

Sketch

02

Fig. Two pass down flow surface condenser

Construction- It consists of horizontal cast iron cylindrical vessel pack with tubes, through which the cooling water flows. The ends of the condenser are cut off by vertical perforated type plates into which water tubes are fixed. This is done in such a manner that the leakage of water in to the centre condensing space is prevented.

Constru ction 02 **Marks**

Working: The water tubes pass horizontally through the main condensing space for the steam. The steam enters at the top & is forced to flow downwards over the tubes due to the suction of the extraction pump at the bottom. The cooling water flows in one direction through lower half of the tubes & return in opposite direction through the upper half as shown in figure.

> 02 Marks

The condensate does not mix with cooling water which is used for cooling Working steam & convert into water; therefore whole condensate can be the reused in the boiler. It is used to increase the turbine output by maintaining backpressure on exhaust side of steam engine or turbine & the secondary function of condenser is to supply pure and hot feed water to boiler.

22441 Page **8** of **11**

	c)	Describe government policy for harnessing the potential power of renewable	
		1) Promote hybridization of solar and wind energy and build ancillary markets: The synergy in a hybrid wind and solar plant will help reduce variability in power generation. Hybrid projects would also have much higher capacity utilization factors, thus practically eliminating the intermittency challenge. Such projects have the additional benefit of reducing the costs associated with the sharing of transmission lines.	
		2) Build enhanced evacuation infrastructure: We need greater investment in high-voltage transmission lines to transport bulk energy over vast distances quickly and efficiently from power-rich to power-scarce states.	
		3) Invest in digitalization: There is huge potential for advanced software solutions that can optimize grid-level operations besides impacting consumer behaviour. The creation of demand response programmes.	
		4) Develop battery storage solutions: As battery storage costs continue to fall precipitously, they will become an increasingly important tool for managing the fluctuating pattern of renewable energy generation.	
		5) Turnaround the distribution companies: Nearly a quarter of electricity generated is lost in transmission because India's distribution companies (known here as discoms) use outdated infrastructure, resulting in line faults and leakages, as well as undersized and over-utilized transformers.	
6		Attempt any Two of the following	
	a)	Calculte enthalpy of 1 kg of steam at a pressure of 7bar and dryness fraction 0.8. How much heat would be required to generate 2 kg of this steam from water at 30 ° C? Take Cpw =4.187KJ/Kg.K	
	Ans:	Given Data: Pressure of steam P= 7 Bar , Dryness Fraction x= 0.8 , Cpw =4.187KJ/Kg.K (at P= 7bar given values) h _f = 697.20 KJ/Kg h _{fg} = 2066.3. KJ/Kg i) Enthaply of one kg of wet steam at 7 bar h= h _f + x h _{fg} h= 697.20 + 0.8 x 2066.3 h=2350.25 KJ/Kg	02 Marks
		ii) Enthalpy of water at 30° C hwater = m x Cpw x T = 2 x 4.187 x (30+273) = 1268.66 KJ/kg	02 Marks
		iii) Heat required to generate one kg of steam = h – hwater =2350.25 -1268.66 = 1081.59 KJ/kg	01 Mark
		iv) Heat required to generate 2 kg of steam = 2 x 1081.59 = 2163.18 KJ /kg	01 Mark

Page **9** of **11** 22441

	workshops			
Ans:		WATER OUT		
	AIR FROM ATMOSPHERE	Pt. P2t2 INTER- P2t3 COOLER H.P. WATER IN H.P.	Paty AIR TO RECEIVER 2nd Stage,	Sketc 02 Marks
	cooled and	vn in ig. Shows two stages reciprocatin intercooler	ig air compressor with water	
	during its su in L,P cyling temp T2.No	II fresh air is sucked from atmosphere in uction stroke at inlet pressure P1 and templer (I st stage) from 1 to 2 is delivered to now air is cooled in intercooler from 2 to 3 T2 to T3. After that air is sucked in high pressure.	o T1.The air after compression intercooler at pressure P2 and at constant pressure P2 and	Workir 02
	suction stro	oke. Finally air after further compression 3 to 4 is delivered by the compressor at p	n in H.P. cylinder (ie second	
	suction stro stage) from Advantage	oke. Finally air after further compression 3 to 4 is delivered by the compressor at post :	n in H.P. cylinder (ie second ressure P3 & Temp T4.	
	suction stro stage) from Advantage 1) Less	oke. Finally air after further compression 3 to 4 is delivered by the compressor at p	n in H.P. cylinder (ie second ressure P3 & Temp T4.	Walk
c)	suction stro stage) from Advantage 1) Less 2) High	oke. Finally air after further compression 3 to 4 is delivered by the compressor at poses: power is required to drive the compressor	n in H.P. cylinder (ie second ressure P3 & Temp T4.	02
c) Ans:	suction strostage) from Advantage 1) Less 2) High	oke. Finally air after further compression 3 to 4 is delivered by the compressor at post : power is required to drive the compressor er volumetric efficiency	n in H.P. cylinder (ie second ressure P3 & Temp T4.	02
	suction strostage) from Advantage 1) Less 2) High	oke. Finally air after further compression 3 to 4 is delivered by the compressor at pose: power is required to drive the compressor er volumetric efficiency trength and two limitations of following.	n in H.P. cylinder (ie second ressure P3 & Temp T4.	02
	suction strostage) from Advantage 1) Less 2) High	oke. Finally air after further compression 3 to 4 is delivered by the compressor at post : power is required to drive the compressor er volumetric efficiency trength and two limitations of following Strength	n in H.P. cylinder (ie second ressure P3 & Temp T4. g power plants. limitations	02
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power	oke. Finally air after further compression 3 to 4 is delivered by the compressor at poses: power is required to drive the compressor er volumetric efficiency trength and two limitations of following Strength 1) They do not pollute the atmosphere.	n in H.P. cylinder (ie second ressure P3 & Temp T4. g power plants. limitations 1)installation cost is high	02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar	oke. Finally air after further compression 3 to 4 is delivered by the compressor at positions: power is required to drive the compressor or volumetric efficiency trength and two limitations of following Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application	02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power	oke. Finally air after further compression 3 to 4 is delivered by the compressor at positions: power is required to drive the compressor or volumetric efficiency trength and two limitations of following Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural areas where for installation large space	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application	02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power	strength and two limitations of following Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural areas where for installation large space is available.	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application	02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power plant Geo-	see. Finally air after further compression 3 to 4 is delivered by the compressor at pose: power is required to drive the compressor er volumetric efficiency trength and two limitations of following Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural areas where for installation large space is available. 3) Clean and cheap energy source.	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application	02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power plant	see. Finally air after further compression 3 to 4 is delivered by the compressor at pose; power is required to drive the compressor er volumetric efficiency. Itemath and two limitations of following: Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural areas where for installation large space is available. 3) Clean and cheap energy source. 4) Easily available in nature	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application storage facility is required.	02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power plant Geo- thermal	see. Finally air after further compression 3 to 4 is delivered by the compressor at pose; power is required to drive the compressor er volumetric efficiency. Itempth and two limitations of following: Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural areas where for installation large space is available. 3) Clean and cheap energy source. 4) Easily available in nature 1) Renewable source of energy.	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application storage facility is required. 1) Selection is very	02 Mark 02 Mark
	suction strostage) from Advantage 1) Less 2) High State two s Power plant Solar power plant Geo- thermal power	oke. Finally air after further compression 3 to 4 is delivered by the compressor at pose: power is required to drive the compressor er volumetric efficiency trength and two limitations of following Strength 1) They do not pollute the atmosphere. 2) Such type of plants suitable in rural areas where for installation large space is available. 3) Clean and cheap energy source. 4) Easily available in nature 1) Renewable source of energy. 2) It is pollution free; No, Co2 emission.	n in H.P. cylinder (ie second ressure P3 & Temp T4. power plants. limitations 1)installation cost is high 2) For night application storage facility is required. 1) Selection is very important and difficult task.	02 Mark

Page **10** of **11** 22441

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Biomass	1) Raw material used as cow dung is	1)Effectively implemented	00
 oower olant	easily available in villages, rural area at	only where open space is	02 Marks
	free of cost.	available	
	2) Easy to operate and having less	2) For producing gas it	
	maintenance.	takes more time.	
	3) No additional Co2 emission to	3) Initial investment is	
	environment.	required for construction of	
	4) Digested matter used as fertilizer.	well.	

(Strength 1 Mark and Limitation 1 Mark each)

THE END

22441 Page **11** of **11**